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Abstract

For high-resolution spectrographs with large phase-space acceptance the hardware correction of all the relevant
aberrations requires so many multipole elements that software correction methods are often more adequate. In this case,
the obligatory computation of the higher-order transfer map becomes feasible if the (three-dimensional) magnetic "eld
within the spectrograph can be approximated with su$cient accuracy in an analytical form. For this purpose, we present
an approach that allows the use of midplane measurements or alternatively measurements in several planes resulting in
a global Maxwellian "eld that suppresses local measurement inaccuracies. It is based on a modi"ed charge density
method generating the magnetic "eld by a superposition of Gaussian charge distributions. The accuracy of the method is
assessed through test cases for which analytical solutions of the "eld components are known. A maximum relative
inaccuracy of the magnetic "eld in the midplane smaller than $10~4 is obtained in the relevant "eld area. In addition,
we obtain a good agreement comparing the multipole content of the analytical "eld solution with the one of the
approximated "eld. ( 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In the case of nuclear particle spectrographs with
large aperture (solid angles 510msr) and with high
energy acceptance (510%), the correction of all the
relevant aberrations would require a large number of
additional multipole elements in order to achieve an

acceptable resolution. Therefore, methods based on
the reconstruction of the trajectories in the particle
spectrograph and the subsequent reconstructive
correction of the aberrations seem to be a more
appropriate alternative [1]. The S800 [2], which
was recently commissioned at Michigan State Uni-
versity's National Superconducting Cyclotron La-
boratory, is such a spectrograph designed for an
energy resolution of one part in 10 000. Because of
its large phase-space acceptance, aberrations of at
least up to "fth order are assumed to be relevant
and may impair the achievable resolution.
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Fig. 1. Analytical reference "eld HB
y
(x, 0, z). We have chosen here

the geometry: x
0
"2.5D, z

0
"3.75D and y

0
"D/2 in units of

the gap distance D between the two bars.

The software correction of aberrations requires
the computation of the higher-order transfer
map that relies on the precise knowledge of the
(three-dimensional) magnetic "eld of the particle
spectrograph. If the magnetic "eld, which is mea-
sured for this purpose, can be approximated with
su$cient accuracy in an analytical form, one can
take full advantage of di!erential algebraic (DA)
methods [3,4]. Using only "eld information in one
plane, the midplane of the sector magnet, one dir-
ectly notices the in#uence of the inaccuracies in the
measurement, particularly when the higher-order
derivatives of the approximated "eld are deter-
mined. This means that higher-order optical prop-
erties might be calculated less precisely, since
derivatives of the midplane "eld of order n contrib-
ute to the nth-order aberrations. Therefore, we
present an approach based on the charge density
method that not only allows to use midplane mea-
surements, but also to readily employ measurements
taken in several additional planes. We estimate the
accuracy that can be obtained with our algorithm by
applying it to the approximation of a reference "eld
that can be represented analytically.

2. An analytical reference 5eld

As reference "eld we consider the magnetic "eld
of rectangular iron bars with inner surfaces
(y"$y

0
) parallel to the midplane (y"0). The

geometry of these uniformly magnetized bars,
which are assumed to be in"nitely extended in the
$y-directions, is de"ned by
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For this region of magnetization one obtains for
the y-component of the magnetic bar "eld HB

y
(x,y,z)

an analytical solution of the form [5]
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with i, j"1,2 and where the following abbrevi-
ations are introduced:
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determines the maximum of this "eld compo-
nent which is taken at the bars.

From HB
y
(x, y, z) we generate reference "eld

points on a regular grid in the midplane (see Fig. 1)
as well as in planes above and below the midplane
as indicated in Fig. 2.

3. The modi5ed charge density method

In order to benchmark the performance of our
method, we approximate in the following the "eld
data obtained from the reference "eld, described in
Section 2, in the same way as measurement data
can be approximated. For this purpose, image
charges are placed on regular grids parallel to the
midplane (see Fig. 2). Using the charge density
method [6] in the magnetostatic case, one cannot
assume in the general case that the scalar potential
is constant on the boundary of the magnets. There-
fore, we determine the strengths of the individual
charges by a least-square "t of the "eld values at the
reference points. In addition, we choose the planes
on which the image charges are placed not to
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Fig. 2. Top: Schematic arrangement of the rectangular iron bars
indicating in the gap the planes that contain the reference "eld
data and two planes on which image charges are placed. Bot-
tom: Grid generated by Gaussian charge distributions. The bold
inner rectangle indicates the cross-section of the bars. Note the
smaller step-size in the horizontal direction in order to describe
the fall-o! of the fringe "eld in more detail.

coincide with the horizontal surfaces of the iron
bars.

In order to reduce any "ne structure due to the
in#uence of individual image charges, we use ex-
tended distributions in the form of three-dimen-
sional Gaussian charge distributions [7]:

o(r)"o
0
e~(r@a)2, (3)

where a is a measure for the width of the Gaussian,
and o

0
determines the strength of the individual

image charge. A magnetic "eld generated by

a superposition of Gaussian charge distributions
automatically satis"es Maxwell's equations.

The ith Gaussian positioned at the point (x
i
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i
,z
i
)

makes a contribution to the y-component of the
magnetic "eld of the form
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and erf(u)"2/Jp :u
0
e~u{2 du@ is the error function.

The total "eld HC
y
(x, y, z) is obtained by summing

over all individual Gaussians. Adjusting their width
appropriately, the superposition of regularly dis-
tributed Gaussians has proven to result in a rather
smooth global "eld distribution.

One of the grids with Gaussian charge distribu-
tions is located in the present con"guration at
y"$D and is larger than the cross-section of the
bars (see Fig. 2). The distance between the Gaus-
sians is chosen to be approximately a. A second
grid with a"1.5D (not depicted in Fig. 2) is placed
at the planes y"$5D, so that eight Gaussians
cover almost the entire area shown in Fig. 2. Since
the Gaussian distribution is approximately zero at
a distance of 3a, it is assumed that o"0 at the
reference planes, which are located at
y"0,$0.125D, and $0.25D. For the computa-
tions we make also use of the midplane symmetry
of the magnet.

The least-squares algorithm results in a quad-
ratic matrix which has to be inverted in order to
determine the strengths of the individual charges.
In total, we placed N

C
"535 Gaussians on a quar-

ter of the whole arrangement, taking advantage of
the geometrical symmetry of the bars. The dimen-
sion of the matrix is given by the number of image
charges and their strengths are determined in the
present case by N

R
"10125 reference "eld points.

4. Computational results

We concentrate in the following on the calcu-
lation of the di!erence between the reference "eld
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Fig. 3. Normalised "eld di!erence (HC
y
(x, 0, z)!HB

y
(x, 0,y))/ HB

y
(0, 0, 0) on a strip through the bar covering 75% of its total width. Top:

No `noisea is added to the reference "eld. Middle: With `noisea of amplitude *HN
.!9

/HB
y
(0, 0, 0)"1]10~4. Bottom: With `noisea of

amplitude *HN
.!9

/HB
y
(0, 0, 0)"5]10~4.

and its approximation on a strip through the
magnet in order to assess the applicability of
our method to the description of sector magnets. In
this case, the proper representation of the entrance

and exit fringe "eld region of the magnet is
of particular importance. The strip covers 75%
of the width of the bars and is twice as long as the
bars. In this area, considered as relevant, the
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Fig. 4. Multipole coe$cient a
01

along the z-axis through the
magnet for the analytical reference "eld (2) and its approxima-
tion by the charge density method (- - -).

Fig. 6. Multipole coe$cient a
41

(z) as in Fig. 4.

Fig. 5. Multipole coe$cient a
21

(z) as in Fig. 4.

maximum di!erence between the y-component of
the two "elds in the midplane *H

y
(x, 0, z)"

HC
y
(x, 0, z)!HB

y
(x, 0, z) normalised on HB

y
(0, 0, 0)

is smaller than 10~4 (see Fig. 3, top). The maxi-
mum di!erences occur in a rather limited region
of the fringe "eld. The average error over the entire
strip is estimated to be one order of magnitude
smaller.

When experimentally obtained magnetic "elds
have to be approximated, local measurement errors

are superimposed on the actual "eld data. In order
to simulate the noise on measured "eld data, we
add/subtract on every point of the reference "eld
a "eld di!erence *HN, which is randomly distrib-
uted in an interval $*HN

.!9
. In the case

*HN
.!9

/HB
y
(0, 0, 0)"10~4, the precision with which

we can approximate the reference "eld is essentially
unchanged. Overall, the average approximation er-
ror increases slightly due to the &&noise''. Neverthe-
less, as long as the amplitude of the `noisea is
within the range of the precision of the charge
density method, this kind of `noisea does not nega-
tively a!ect the accuracy of the "eld approxima-
tion.

When the `noisea amplitude is increased by
a factor of "ve, we "nd the expected bene"cial result
that the method provides smoothing of this `noisya
data. In this case, the relative "eld di!erence
*H

y
(x, 0, z)/HB

y
(0, 0, 0) is smaller than 1.5]10~4.

The areas of maximal "eld di!erences are not re-
stricted to the fringe "eld region anymore, resulting
in a di!erence pattern that is dominated by the
`noisea.

4.1. Multipole content

In order to calculate the multipole content of the
analytical reference "eld and the one determined
by the charge density method, we perform an
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expansion of the magnetic scalar potential
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In the case of midplane symmetry (a
k0
"0), the

multipole coe$cients a
kl

with l52 are uniquely
determined by the coe$cients a

k1
.

If the components of the "elds or the magnetic
scalar potential in the midplane are known in an
analytical form, the decomposition into the indi-
vidual multipole moments can immediately be cal-
culated within a DA-based framework [4]. For
particle optics calculations up to "fth order, the
relevant coe$cients are a

01
(z), a

21
(z), and a

41
(z).

The coe$cient a
01

(z) describes the "eld distribution
while a

21
(z) and a

41
(z) determine the second and

fourth derivative with respect to x. In the case of the
bar "eld, derivatives in x-direction seem to be more
sensitive than for a homogenous sector magnet.
Therefore, we assume that the accuracy which we
obtain for the analytical reference "eld is a reason-
able estimate for the accuracy that we can expect in
the case of homogeneous sector magnets including
higher-order derivatives.

Using the code COSY INFINITY [4], we cal-
culated the distribution of the coe$cients
a
01

(z), a
21

(z), and a
41

(z) for the bar "eld and its
approximated "eld. The results are shown in
Figs. 4}6. As one can see, the second derivative
agrees very well while a slight deviation is notice-
able for the fourth derivative.

5. Conclusion

One of the limiting factors for the obtainable
accuracy in the approximation of measured mag-
netic dipole "elds can be the noise on the available

data. Although in such a case the noise may not
have an essential in#uence on the y-component of
the "eld in the midplane, its e!ect on the derivatives
might not be negligible. Therefore, an additional
smoothing of measured "eld data seems advisable
as soon as higher-order optics computations have
to be performed [8]. Nevertheless, since the modi-
"ed charge density method presented here has
proven to compensate for noise up to a certain
extent, the importance of the actual smoothing
algorithm should be less critical.
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